97 research outputs found

    A matched-filter-based reverse-time migration algorithm for ground-penetrating radar data

    Get PDF
    Ground-penetrating radar (GPR) is a remote sensing technique used to obtain information on subsurface features from data collected over the surface. The process of collecting data may be viewed as mapping from the object space to an image space. Since most GPRs use broad beamwidth antennas, the energy reflected from a buried structure is recorded over a large lateral aperture in the image space. Migration algorithms are used to reconstruct an accurate scattering map by refocusing the recorded scattering events to their true spatial locations through a backpropagation process. The goal of this paper is to present a pair of finite-difference time-domain (FDTD) reverse-time migration algorithms for CPR data processing. Linear inverse scattering theory is used to develop a matched-filter response for the GPR problem. The reverse-time migration algorithms, developed for both bistatic and monostatic antenna configurations, are implemented via FDTD in the object space. Several examples are presented

    The use of ground-penetrating radar with a cooperative target

    Get PDF
    ©1998 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.A cooperative target (CT) is proposed to enhance the ground-penetrating radar (GPR) signal-to-clutter ratio (SCR) for buried man-made targets. Applications include tagging high-value buried structures and monitoring microtunneling equipment. Results are presented for a time-domain CT, a dipole antenna connected to an unterminated delay line. By using several independent time-domain CT's, strategically arrayed about a target, the rotational aspect of the target can also be obtained. Finally, harmonic generation is demonstrated as a technique for a frequency-domain CT

    An FDTD/MoM hybrid technique for modeling complex antennas in the presence of heterogeneous grounds

    Get PDF
    ©1999 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.Calculating the current distribution and radiation patterns for ground-penetrating radar antennas is a challenging problem because of the complex interaction between the antenna, the ground, and any buried scatterer. Typically, numerical techniques that are well suited for modeling the antennas themselves are not well suited for modeling the heterogeneous grounds, and visa versa, For example the finite-difference time-domain (FDTD) technique is well suited for modeling fields in heterogeneous media, whereas the method of moments (MoM) is well suited for modeling complex antennas in free space. This paper describes a hybrid technique, based upon the equivalence principle, for calculating an antenna's current distribution radiation pattern when the antenna is located near an air-ground interface. The original problem is decomposed into two coupled equivalent problems: one for the antenna geometry and the other for the ground geometry, with field information passing between them via a rapidly converging iterative procedure, The fields in each region may be modeled using numerical techniques best suited to them, Results for several test cases are presented, using FDTD to model the ground problem and MoM for the antenna problem, that demonstrate the accuracy of this hybrid technique

    Seismic reflections from depths of less than two meters

    Get PDF
    This is the publisher's version, also available electronically from "http://onlinelibrary.wiley.com".Three distinct seismic reflections were obtained from within the upper 2.1 m of flood-plain alluvium in the Arkansas River valley near Great Bend, Kansas. Reflections were observed at depths of 0.63, 1.46, and 2.10 m and confirmed by finite-difference wave-equation modeling. The wavefield was densely sampled by placing geophones at 5-cm intervals, and near-source nonelastic deformation was minimized by using a very small seismic impulse source. For the reflections to be visible within this shallow range, low seismic P-wave velocities (<300 m/s) and high dominant-frequency content of the data (∼450 Hz) were essential. The practical implementation of high-resolution seismic imaging at these depths has the potential to complement ground-penetrating radar (GPR), chiefly in areas where materials exhibiting high electrical conductivity, such as clays, prevent the effective use of GPR. Potential applications of these results exist in hydrogeology and environmental, Quaternary, and neotectonic geology

    Value of early postoperative epicardial programmed ventricular stimulation studies after surgery for ventricular tachyarrhythmias

    Get PDF
    The value of early postoperative epicardial programmed ventricular stimulation studies after electrophysiologically-directed surgery for ventricular tachyarrhythmia was assessed in 34 patients who underwent epicardial stimulation within 7 to 30 days (mean 9.8) of surgery and were followed up for at least 6 months. The antiarrhythmic operation performed was an endocardial ventriculotomy (full encircling or limited), an endocardial resection, a wall resection or a combination of these procedures. All these interventions were directed by intraoperative mapping during sinus rhythm. Temporary epicardial wire electrodes left at the time of surgery rather than endocardial catheter electrodes were used to perform the pacing. The stimulation protocol included the introduction of up to three ventricular extrastimuli and incremental burst ventricular pacing performed at twice diastolic threshold (9.2 ± 5.8 mA for the right ventricle and 6.0 ± 3.5 mA for the left ventricle). A study was considered positive when ventricular tachycardia, defined as 10 or more consecutive ventricular beats, was induced by any pacing modality.Nineteen patients (Group I) had a negative study: after stimulation of both ventricles in 15 patients and of the left ventricle only in 4. Fifteen patients (Group II) had a positive study: after stimulation of the right ventricle in nine patients and of the left ventricle in six. The two groups were comparable with respect to preoperative clinical status, surgical procedures performed and postoperative ejection fraction. No arrhythmic events were observed in Group I during a mean follow-up period of 19.5 months (range 4 to 37), whereas seven arrhythmic events (47% incidence) occurred (p = 0.0008) in Group II during a mean follow-up period of 17.7 months (range 5 to 39). These arrhythmic events were sudden death (five patients) and sustained ventricular tachycardia (two patients).It is concluded that temporary epicardially-placed electrodes can be used satisfactorily to perform programmed ventricular stimulation studies in the postoperative period, thereby avoiding the cardiac catheterizations otherwise necessary to perform these studies. In addition, the protocol used in this report of epicardial programmed ventricular stimulation early after surgery for ventricular tachyarrhythmia predicts a good outcome if the study is negative and identifies patients at a high risk for future arrhythmic events when positive

    Comparison of indoor contact time data in Zambia and Western Cape, South Africa suggests targeting of interventions to reduce Mycobacterium tuberculosis transmission should be informed by local data.

    Get PDF
    BACKGROUND: In high incidence settings, the majority of Mycobacterium tuberculosis (M.tb) transmission occurs outside the household. Little is known about where people's indoor contacts occur outside the household, and how this differs between different settings. We estimate the number of contact hours that occur between adults and adult/youths and children in different building types in urban areas in Western Cape, South Africa, and Zambia. METHODS: Data were collected from 3206 adults using a cross-sectional survey, on buildings visited in a 24-h period, including building function, visit duration, and number of adults/youths and children (5-12 years) present. The mean numbers of contact hours per day by building function were calculated. RESULTS: Adults in Western Cape were more likely to visit workplaces, and less likely to visit shops and churches than adults in Zambia. Adults in Western Cape spent longer per visit in other homes and workplaces than adults in Zambia. More adults/youths were present at visits to shops and churches in Western Cape than in Zambia, and fewer at homes and hairdressers. More children were present at visits to shops in Western Cape than in Zambia, and fewer at schools and hairdressers. Overall numbers of adult/youth indoor contact hours were the same at both sites (35.4 and 37.6 h in Western Cape and Zambia respectively, p = 0.4). Child contact hours were higher in Zambia (16.0 vs 13.7 h, p = 0.03). Adult/youth and child contact hours were highest in workplaces in Western Cape and churches in Zambia. Compared to Zambia, adult contact hours in Western Cape were higher in workplaces (15.2 vs 8.0 h, p = 0.004), and lower in churches (3.7 vs 8.6 h, p = 0.002). Child contact hours were higher in other peoples' homes (2.8 vs 1.6 h, p = 0.03) and workplaces (4.9 vs 2.1 h, p = 0.003), and lower in churches (2.5 vs 6.2, p = 0.004) and schools (0.4 vs 1.5, p = 0.01). CONCLUSIONS: Patterns of indoor contact between adults and adults/youths and children differ between different sites in high M.tb incidence areas. Targeting public buildings with interventions to reduce M.tb transmission (e.g. increasing ventilation or UV irradiation) should be informed by local data

    Changes in characteristics and case-severity in patients hospitalised with influenza A (H1N1) pdm09 infection between two epidemic waves-England, 2009-2010.

    Get PDF
    BACKGROUND: During 2009-2010, pandemic influenza A (H1N1) pdm09 virus (pH1N1) infections in England occurred in two epidemic waves. Reasons for a reported increase in case-severity during the second wave are unclear. METHODS: We analysed hospital-based surveillance for patients with pH1N1 infections in England during 2009-2010 and linked national data sets to estimate ethnicity, socio-economic status and death within 28 days of admission. We used multivariable logistic regression to assess whether changes in demographic, clinical and management characteristics of patients could explain an increase in ICU admission or death, and accounted for missing values using multiple imputation. RESULTS: During the first wave, 54/960 (6%) hospitalised patients required intensive care and 21/960 (2%) died; during the second wave 143/1420 (10%) required intensive care and 55/1420 (4%) died. In a multivariable model, during the second wave patients were less likely to be from an ethnic minority (OR 0.33, 95% CI 0.26-0.42), have an elevated deprivation score (OR 0.75, 95% CI 0.68-0.83), have known comorbidity (OR 0.78, 95% CI 0.63-0.97) or receive antiviral therapy ≤2 days before onset (OR 0.72, 95% CI 0.56-0.92). Increased case-severity during the second wave was not explained by changes in demographic, clinical or management characteristics. CONCLUSIONS: Monitoring changes in patient characteristics could help target interventions during multiple waves of COVID-19 or a future influenza pandemic. To understand and respond to changes in case-severity, surveillance is needed that includes additional factors such as admission thresholds and seasonal coinfections

    Lethal Injection for Execution: Chemical Asphyxiation?

    Get PDF
    Data from executions in the US suggest that current lethal injection protocols do not effect death through the mechanisms intended, and that potentially aware inmates could die through pancuronium-induced asphyxiation

    The Rapidly Deployable Radio Network

    Get PDF
    The Rapidly Deployable Radio Network (RDRN) is an architecture and experimental system to develop and evaluate hardware and software components suitable for implementing mobile, rapidly deployable, and adaptive wireless communications systems. The driving application for the RDRN is the need to quickly establish a communications infrastructure following a natural disaster, during a law enforcement activity, or rapid deployment of military force. The RDRN project incorporates digitally controlled antenna beams, programmable radios, adaptive protocols at the link layer, and mobile node management. This paper describes the architecture for the Rapidly Deployable Radio Network and a prototype system built to evaluate key system components
    corecore